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Abstract

We propose conjectural semiorthogonal decompositions for Fano schemes of linear subspaces

on intersections of two quadrics, in terms of symmetric powers of the associated hyperelliptic

(resp. stacky) curve. When the intersection is odd-dimensional, we moreover conjecture an identity

in the Grothendieck ring of varieties and other motivic contexts. The evidence for these conjectures is

given by upgrading recent results of Chen–Vilonen–Xue, to obtain formulae for the Hodge numbers

of these Fano schemes. This allows us to numerically verify the conjecture in the hyperelliptic case,

and establish a combinatorial identity as evidence for the stacky case.

1 Introduction

Let 𝑄1 ∩ 𝑄2 be the intersection of two quadrics in P2𝑔+1, resp. P2𝑔, for 𝑔 ≥ 2, where we work over a

field k which is algebraically closed of characteristic zero. When topological methods are used, we

take k = C. It is well-known that there is an associated hyperelliptic (resp. stacky) curve which controls

much of the geometry of 𝑄1 ∩𝑄2, as recalled in Section 2.2. We denote this curve by 𝐶 (resp. C).

Our starting point is the semiorthogonal decomposition for the derived category of 𝑄1 ∩ 𝑄2 due to

Bondal–Orlov [7, Theorem 2.9] (for the hyperelliptic case) resp. Kuznetsov [23, Corollary 5.7] (for both

cases) which reads

(1) Db(𝑄1 ∩𝑄2) =
{
⟨Db(𝐶),O𝑄1∩𝑄2

, . . . ,O𝑄1∩𝑄2
(2𝑔 − 3)⟩ dim𝑄1 ∩𝑄2 = 2𝑔 − 1

⟨Db(C),O𝑄1∩𝑄2
, . . . ,O𝑄1∩𝑄2

(2𝑔 − 4)⟩ dim𝑄1 ∩𝑄2 = 2𝑔 − 2.

Fano schemes of intersections of two quadrics We will generalize from 𝑄1 ∩𝑄2 and consider

the Fano schemes of 𝑘-dimensional linear subspaces on 𝑄1 ∩𝑄2, as introduced in [1], and previously

studied in [34]. They will be denoted F𝑘 (𝑄1 ∩ 𝑄2), where 𝑘 = 0 refers to the Fano scheme of points

on 𝑄1 ∩𝑄2, i.e., 𝑄1 ∩𝑄2 itself, and 𝑘 = 𝑔 − 1 is the highest dimension for which they are non-empty.

These Fano schemes are smooth projective varieties of expected dimension (𝑘 + 1) (2𝑔 + 1 − 𝑘) − 2

(
𝑘+2
𝑘

)
resp. (𝑘 + 1) (2𝑔 − 𝑘) − 2

(
𝑘+2
𝑘

)
. We recall some more of their geometric properties in Section 2.1.

For 𝑄1 ∩𝑄2 ⊂ P2𝑔+1, the Fano scheme F𝑔−2(𝑄1 ∩𝑄2) is the moduli space M𝐶 (2,L) of stable rank-two
bundles with fixed determinant of odd degree [15, Theorem 1], the Fano scheme F𝑔−1(𝑄1 ∩𝑄2) is the
Jacobian Jac(𝐶) [34, Theorem 4.8], and for all 𝑘 = 0, . . . , 𝑔 − 1 there is an interpretation as a moduli

space of orthogonal bundles [32, Theorem 3].

The goal of this article is to propose conjectural semiorthogonal decompositions for Db(F𝑘 (𝑄1 ∩𝑄2)),
generalizing from the case (1) for 𝑘 = 0, and give evidence for these conjectures.
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Hyperelliptic case We first consider the odd-dimensional case, i.e., 𝑄1 ∩ 𝑄2 ⊂ P2𝑔+1, so that the

associated curve 𝐶 is a hyperelliptic curve. In what follows, Sym
𝑖 𝐶 denotes the 𝑖th symmetric power

of 𝐶 , which is a smooth projective variety of dimension 𝑖 .

Conjecture A. Let 𝑄1 ∩ 𝑄2 be a smooth intersection of quadrics in P2𝑔+1, and let 𝐶 be the associated
hyperelliptic curve. For all 𝑘 = 0, . . . , 𝑔 − 2 there exists a semiorthogonal decomposition

(2) Db(F𝑘 (𝑄1∩𝑄2)) =
〈(
2𝑔 − 4 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
+ 2

(
2𝑔 − 4 − 𝑘 − 𝑖

𝑘 − 𝑖

)
copies of Db(Sym𝑖 𝐶), for 𝑖 = 0, . . . , 𝑘 + 1

〉
.

The indecomposability of Db(Sym𝑖 𝐶) for 𝑖 ≤ 𝑔 − 1 follows from [28, Theorem 1.9]. For 𝑘 = 𝑔 − 1 we

have F𝑔−1(𝑄1 ∩𝑄2) � Jac(𝐶) [34, Theorem 4.8], whose derived category is also indecomposable.

Our method for giving evidence for this conjecture uses a (conjectural) identity in the Grothendieck

ring of varieties, and it is for this identity that we will give evidence. This identity also allows one to

conjecture analogous identities, e.g., in the category of Chow motives, but we will not explicitly spell

these out.

To phrase this conjectural identity for [F𝑘 (𝑄1 ∩𝑄2)] in K0(Var/k) as in Conjecture B we will write

(3)

(
𝑛

𝑚

)
L

:=
(1 − L𝑛) (1 − L𝑛−1) · · · (1 − L𝑛−𝑚+1)

(1 − L) (1 − L2) · · · (1 − L𝑚)

for the Gaussian binomial coefficient in the variable L = [A1] ∈ K0(Var/k). We define the following

element

(4)

𝑀𝑔,𝑘,𝑖 := L𝑖 (𝑔−𝑘−1)

((
2𝑔 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
L
−

(
L𝑔−𝑘−1 + L𝑔+2𝑘−3𝑖

) (
2𝑔 − 𝑘 − 𝑖 − 4

𝑘 − 𝑖

)
L

−
(
L𝑔−𝑘 + L𝑔−𝑖 + L𝑔+𝑘−2𝑖 + L3𝑔−3𝑘−4 + L3𝑔−2𝑘−4−𝑖 + L3𝑔−𝑘−2𝑖−4

) (
2𝑔 − 𝑘 − 𝑖 − 4

𝑘 − 𝑖 − 1

)
L

−
(
L3(𝑔−𝑘−1) + L3(𝑔−𝑘−1)+1 + L3𝑔−2𝑘−𝑖−3 + L3𝑔−2𝑘−𝑖−2

) (
2𝑔 − 𝑘 − 𝑖 − 4

𝑘 − 𝑖 − 2

)
L

− L4(𝑔−𝑘 )−2
(
2𝑔 − 𝑘 − 𝑖 − 4

𝑘 − 𝑖 − 3

)
L

)
in the subring Z[L] ⊂ K0(Var/k). The following conjecture is phrased for the Grothendieck ring of

varieties, but as explained before, it can verbatim be phrased in other contexts, such as an isomorphism

in the category of Chow motives.

Conjecture B. For 𝑄1 ∩𝑄2 and 𝐶 as in Conjecture A and 𝑘 = 0, . . . , 𝑔 − 2 the expression 𝑀𝑔,𝑘,𝑖 in (4) is
effective, i.e.,𝑀𝑔,𝑘,𝑖 ∈ Z≥0 [L], and we have the identity

(5) [F𝑘 (𝑄1 ∩𝑄2)] =
𝑘+1∑︁
𝑖=0

𝑀𝑔,𝑘,𝑖 [Sym𝑖 𝐶]

in K0(Var/k).

The evidence for Conjectures A and B is discussed in Section 3. We will explain how to compute the

E-polynomial of F𝑘 (𝑄1 ∩𝑄2): our main result in this direction is the following theorem, generalizing

[12, Theorem 1.1] to include the Hodge structures on both sides of the isomorphism in the statement of

loc. cit.
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Theorem C. For 𝑄1 ∩𝑄2 and 𝐶 as in Conjecture A and 𝑘 = 0, . . . , 𝑔 − 2, we will write

(6) 𝑑 := dim F𝑘 (𝑄1 ∩𝑄2) = (𝑘 + 1) (2𝑔 − 2𝑘 − 1) .

For all 𝑖 = −𝑑, . . . , 𝑑 there exists an isomorphism of Hodge structures

(7) H
𝑑−𝑖 (F𝑘 (𝑄1 ∩𝑄2),Q) �

𝑔⊕
𝑗=𝑑−𝑘−1

H
𝑔− 𝑗 (Jac𝐶,Q) ⊗ Q(−)⊕𝑁 (𝑔−𝑘,𝑗 ;𝑑−𝑖 )

where Q(−) denotes the appropriate Tate twist into weight 𝑑 − 𝑖 , and the multiplicity 𝑁 (𝑎, 𝑏; 𝑐) is given by
the coefficient of 𝑞𝑐 in

(8) 𝑞−(𝑏−𝑎+1) (2𝑎−1) (1 − 𝑞4𝑏)
∏𝑎+𝑏−2

ℓ=𝑏−𝑎+2(1 − 𝑞2ℓ )∏
2𝑎−2
ℓ=1 (1 − 𝑞2ℓ )

.

We do not see an immediate way to turn the multiplicities in (7) into the multiplicities as they arise in

(5), a non-trivialc recombination and decomposition step seems necessary to translate between the two

decompositions, which is why we resort to giving computational evidence in Section 3.3.

Having obtained this identity, we can conjecturally lift the identity in Z[𝑥,𝑦] along the E-polynomial

motivic measure 𝜇E from (20) to an identity in K0(Var/k), which leads to Conjecture B.

The identity (5) after applying 𝜇E can be verified computationally for arbitrary 𝑔 and 𝑘 using [2], see

Section 3.3. The motivic measure 𝜇Db from (23) then gives an identity in K0(Cat/k) by setting L = 1 as

in Lemma 3.17 which thus leads to Conjecture A.

Stacky case We next consider the even-dimensional case, i.e., 𝑄1 ∩𝑄2 ⊂ P2𝑔, so that the associated

curve C is a stacky curve. In [16, §2] an ad hoc definition of a “stacky symmetric power” Sym
𝑖 C is given

for the specific stacky curve C which appears for 𝑄1 ∩𝑄2. We recall its construction and properties

in Section 4.3. Unlike the hyperelliptic case, the derived category of Sym
𝑖 C admits a full exceptional

collection, and is thus “maximally decomposable”.

The analogue of Conjecture A in the stacky case is the following.

Conjecture D. Let 𝑄1 ∩𝑄2 be a smooth intersection of quadrics in P2𝑔, and let C be the associated stacky
curve. For all 𝑘 = 0, . . . , 𝑔 − 2 there exists a semiorthogonal decomposition

(9) Db(F𝑘 (𝑄1 ∩𝑄2)) =
〈(
2𝑔 − 3 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
copies of Db(Sym𝑖 C), for 𝑖 = 0, . . . , 𝑘 + 1

〉
.

For 𝑘 = 𝑔 − 1 we have that F𝑔−1(𝑄1 ∩ 𝑄2) is a reduced and finite scheme of cardinality 2
2𝑔

[34,

Theorem 3.8].

We present the same kind of evidence as for Conjectures A and B, by giving the analogue of Theorem C.

The following is (almost) [13, Theorem 1.1].

Proposition E. For 𝑄1 ∩𝑄2 as in Conjecture D, and 𝑘 = 0, . . . , 𝑔 − 2 we will write

(10) 𝑑 := dim F𝑘 (𝑄1 ∩𝑄2) = (𝑘 + 1) (2𝑔 − 2𝑘 − 2) .

The cohomology of F𝑘 (𝑄1 ∩ 𝑄2) is concentrated in even degrees, and for all 𝑖 = 0, . . . , 𝑑 there exists an
isomorphism of Hodge structures

(11) H
2𝑖 (F𝑘 (𝑄1 ∩𝑄2),Q) �

𝑘+1⊕
𝑗=0

Q⊕𝑀 (𝑖+1, 𝑗,𝑘 ) (2𝑔+1𝑗 )
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where𝑀 (𝑎, 𝑏; 𝑐) is the coefficient of 𝑞𝑐−𝑏 (𝑛−𝑎) in 𝑔𝑎−𝑏,2𝑔−𝑎−𝑏 (𝑞) with

(12) 𝑔𝑑,𝑒 (𝑞) :=
∏𝑒

ℓ=𝑒−𝑑+1(1 − 𝑞ℓ )∏𝑑
ℓ=1(1 − 𝑞ℓ )

=

(
𝑒

𝑑

)
𝑞

.

In particular, the Hodge structure on H
2𝑖 (F𝑘 (𝑄1 ∩𝑄2),Q) is of Hodge–Tate type.

The new ingredient in this statement is that it is of Hodge–Tate type, the rest is already proven in [13].

The Hodge–Tateness is claimed on [12, page 517], but no proof seems to be given in [12, 13].

The analogue of Conjecture B expresses [F𝑘 (𝑄1 ∩𝑄2)] entirely as a sum of powers of the Lefschetz

motive, and can be read off from Proposition E.

Known cases and relations to other works Some cases of Conjectures A and D are already known,

and one still open case has been phrased before in the literature:

• If 𝑘 = 0 then Conjectures A and D reduce to the known semiorthogonal decompositions (1), as

discussed before.

• If 𝑘 = 0 then Conjecture B is known to hold up to a common factor of L, as explained in

Lemma 3.14. For 𝑔 = 2 it is a classical result that it holds without the factor of L, see Remark 3.15.

• If 𝑘 = 0, . . . , 𝑔 − 2 and dim𝑄1 ∩ 𝑄2 = 2𝑔 − 1 is odd, then [17, Theorem 2.11] shows that there

is a natural fully faithful functor Db(𝐶) ↩→ Db(F𝑘 (𝑄1 ∩𝑄2)). This is an important first step in

settling Conjecture A.

• If 𝑘 = 𝑔 − 2 and dim𝑄1 ∩𝑄2 = 2𝑔 − 1 is odd, then Conjecture A reduces to what is referred to

as the BGMN conjecture. In this case F𝑔−2(𝑄1 ∩ 𝑄2) � M𝐶 (2,L) is the moduli space of stable

rank-two bundles on 𝐶 with fixed determinant of odd degree [15, Theorem 1].

It is in fact possible to let 𝐶 be any (and not just hyperelliptic) curve in the statement of the

BMGN conjecture. The conjecture (together with evidence for it) was phrased in [3, 26]. Partial

progress was obtained in [4, 27], whereas the combination of [39, 40] settles it for all 𝐶 .

• If 𝑘 = 𝑔 − 2 and dim𝑄1 ∩𝑄2 = 2𝑔 − 2 is even, then Conjecture D was previously stated in [16, §2].

In this case F𝑔−2(𝑄1 ∩ 𝑄2) � MC(2,OC) is the moduli space of stable quasiparabolic rank-two

bundles on P1 – the coarse space of C – with weights 1/2 at the marked points [10, Theorem].
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2 Preliminaries

Let 𝑛 ≥ 2, and let 𝑉 be an (𝑛 + 1)-dimensional vector space. We let 𝑄1, 𝑄2 ⊂ P(𝑉 ) be quadric hypersur-
faces such that 𝑄1 ∩𝑄2 ⊂ P(𝑉 ) = P𝑛 is a smooth (𝑛 − 2)-dimensional complete intersection. Then by

[34, Proposition 2.1] the pencil spanned by 𝑄1 and 𝑄2 contains precisely 𝑛 + 1 quadrics of corank 1, and

all others are smooth. We can thus choose generators 𝑄1 and 𝑄2 of the pencil which are smooth, and

which in an appropriate basis can be written as

(13)

𝑄1 : 𝑥
2

0
+ . . . + 𝑥2𝑛 = 0

𝑄2 : 𝑎0𝑥
2

0
+ . . . + 𝑎𝑛𝑥2𝑛 = 0

for some scalars 𝑎𝑖 ∈ k, with 𝑎𝑖 ≠ 𝑎 𝑗 for 𝑖 ≠ 𝑗 .

In what follows we will take 𝑔 ≥ 2, and let 𝑛 + 1 = 2𝑔 + 2 or 2𝑔 + 1. Following Section 2.2 we will refer

to the former as the hyperelliptic situation, and to the latter as the stacky situation.

2.1 Fano schemes of linear subspaces on intersections of two quadrics

In this paper we are concerned with Fano schemes of linear subspaces. We will briefly recall their

relevant properties. For 𝑖 = 1, 2 we write

(14) OGr𝑖 (𝑘 + 1,𝑉 ) := {𝑈 ∈ Gr(𝑘 + 1,𝑉 ) | P(𝑈 ) ⊂ 𝑄𝑖},

which is the Grassmannian of isotropic linear subspaces of dimension 𝑘 + 1 in𝑉 . Then for 0 ≤ 𝑘 ≤ 𝑔 − 1

we define

(15) F𝑘 (𝑄1 ∩𝑄2) := OGr1(𝑘 + 1,𝑉 ) ∩ OGr2(𝑘 + 1,𝑉 )

parametrizing projective 𝑘-planes contained in 𝑄1 ∩ 𝑄2. This is the Fano scheme of linear subspaces
on 𝑄1 ∩ 𝑄2 as introduced in [1]. Alternatively, we can define F𝑘 (𝑄1 ∩ 𝑄2) as the zero locus of the

global section of (Sym2U∨)⊕2 corresponding to 𝑄1 and 𝑄2, where U is the tautological subbundle

on Gr(𝑘 + 1,𝑉 ).

We collect some useful facts about F𝑘 (𝑄1 ∩𝑄2) here. We will consider the two possibilities for dim𝑉

separately, as the geometry of the Fano schemes is very different.

The hyperelliptic case First, suppose dim𝑉 = 2𝑔 + 2, so that dim𝑄1 ∩𝑄2 = 2𝑔 − 1. The following

combines [34, Theorem 2.6] and [14, Remarque 3.2.1, Corollaire 3.5].

Proposition 2.1. For 𝑘 = 0, . . . , 𝑔 − 1 the Fano scheme F𝑘 (𝑄1 ∩ 𝑄2) is a smooth projective variety
of dimension (𝑘 + 1) (2𝑔 − 2𝑘 − 1). Its Picard rank is 1, except when 𝑘 = 𝑔 − 1. Its canonical bundle
is −(2𝑔 − 2𝑘 − 2)𝐻 , where 𝐻 is the ample generator of the Picard group if 𝑘 ≤ 𝑔 − 2, and it is trivial
when 𝑘 = 𝑔 − 1.

When 𝑘 = 0, . . . , 𝑔 − 2 it is thus a Fano variety of index 2𝑔 − 2𝑘 − 2, and when 𝑘 = 𝑔 − 1 the Fano

scheme is Calabi–Yau. Indeed, in this latter case there is an isomorphism F𝑔−1(𝑄1 ∩𝑄2) � Jac(𝐶) [34,
Theorem 4.8], where 𝐶 is the hyperelliptic curve which we will introduce in Section 2.2. For 𝑘 = 𝑔 − 2

the Fano scheme is isomorphic to the moduli space M𝐶 (2,L) of stable rank-two bundles with fixed

determinant of odd degree [15, Theorem 1]. Finally, for all 𝑘 = 0, . . . , 𝑔 − 1 the Fano scheme admits an

interpretation as a moduli space of orthogonal bundles [32, Theorem 3].
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The stacky case Next, suppose dim𝑉 = 2𝑔 + 1, so that dim𝑄1 ∩𝑄2 = 2𝑔− 2. The following combines

[34, Theorem 2.6] and [14, Remarque 3.2.1, Corollaire 3.5].

Proposition 2.2. For 𝑘 = 0, . . . , 𝑔 − 2, the Fano scheme F𝑘 (𝑄1 ∩ 𝑄2) is a smooth projective variety
of dimension (𝑘 + 1) (2𝑔 − 2𝑘 − 2). Its Picard rank is 1, except when 𝑘 = 𝑔 − 2. Its canonical bundle
is −(2𝑔 − 2𝑘 − 3)𝐻 , where 𝐻 is the ample generator of the Picard group if 𝑘 ≤ 𝑔 − 3, resp. an ample class
if 𝑘 = 𝑔 − 2.

For 𝑘 = 𝑔 − 1, the Fano scheme F𝑔−1(𝑄1 ∩𝑄2) is a finite reduced scheme of length 4
𝑔.

When 𝑘 = 0, . . . , 𝑔 − 2 it is thus a Fano variety of index 2𝑔 − 2𝑘 − 3.

2.2 Curves associated to intersections of two quadrics

We continue with 𝑉 a vector space of dimension 2𝑔 + 2, resp. 2𝑔 + 1, and take 𝑄1, 𝑄2 ⊂ P(𝑉 ) as before:
two smooth quadrics spanning a pencil of quadrics whose base locus is again smooth. This pencil will

moreover degenerate to quadric cones over 2𝑔 + 2 or 2𝑔 + 1 points in the pencil. To 𝑄1 ∩𝑄2 we want

to associate a curve which controls the geometry of 𝑄1 ∩ 𝑄2. Depending on the parity of dim𝑉 we

distinguish two cases.

Hyperelliptic case If dim𝑉 = 2𝑔 + 2, we consider the hyperelliptic curve 𝜋 : 𝐶 → P1 branched
over the 2𝑔 + 2 distinguished points in P1. This is the hyperelliptic curve associated to 𝑄1 ∩𝑄2, and

throughout, we will refer to the case dim𝑉 = 2𝑔 + 2 as the “hyperelliptic case”.

More intrinsically, this hyperelliptic curve can be described as the moduli space of families of max-

imal isotropic subspaces contained in the fibers of the pencil generated by 𝑄1 and 𝑄2. Explicitly, if

Q ⊂ P1 × P2𝑔+1 is the universal family of quadrics in the pencil, then 𝐶 arises in the Stein factorization

(16) F𝑔 (Q/P1) → 𝐶 → P1,

where F𝑔 (Q/P1) is the relative Fano scheme of projective 𝑔-planes in the fibers of Q → P1.

Stacky case If dim𝑉 = 2𝑔 + 1, we consider the root stack C → P1, defined by Z/2Z-stabilizers at
the 2𝑔 + 1 distinguished points in P1. This is the stacky curve associated to𝑄1 ∩𝑄2, and throughout, we

will refer to the case dim𝑉 = 2𝑔 + 1 as the “stacky case”.

The original way in which the stacky curve arises from 𝑄1 ∩ 𝑄2 is less direct than the moduli-

theoretic incarnation explained above. It is shown in [23, Theorem 5.4] that the homological projective
dual of P𝑛 with respect to the Veronese embedding given by OP(𝑉 ) (2) is the noncommutative va-

riety (PH0(P(𝑉 ),OP(𝑉 ) (2)),Cℓ0) given by the sheaf of even parts of Clifford algebras. Thus by the

formalism of homological projective duality [24] the semiorthogonal decomposition of𝑄1∩𝑄2 has as its

interesting component the derived category of the restriction of C to the projective line corresponding

to the pencil spanned by 𝑄1 and 𝑄2.

By [23, Corollary 3.16] there exists an equivalence of abelian categories

(17) cohC � coh(P1,Cℓ0 |P1)

through the central reduction of §3.6 in op. cit., thus C only arises a posteriori as a geometric object

attached to 𝑄1 ∩𝑄2.

In the hyperelliptic case, a different central reduction is used to go from (P1,Cℓ0 |P1) to 𝐶 . Thus, in
the proof of (1) following [23], the hyperelliptic curve 𝐶 appears in a more indirect way than in the

original [7].
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2.3 Grothendieck rings and motivic measures

In order to give evidence for Conjectures A, B and D we will consider the Grothendieck ring of varieties

(resp. categories) and motivic measures out of it. We will prove various identities after having applied a

certain motivic measure, and conjecture that the same identities hold before taking the measure.

Throughout this section, we let k denote a field. For simplicity we will assume from the beginning that

it is algebraically closed field and of characteristic zero, but this is not needed for some of the results we

will use.

Definition 2.3. The Grothendieck ring of varieties K0(Var/k) is the free abelian group generated by iso-

morphism classes of varieties of finite type over k, modulo the cut-and-paste relation [𝑋 ] = [𝑌 ] + [𝑋 \𝑌 ]
whenever 𝑌 ⊂ 𝑋 is a closed subvariety. The ring structure on K0(Var/k) is defined by the cartesian

product of varieties.

We set L = [A1

k] ∈ K0(Var/k), so that [A𝑛
k] = L𝑛

, and [P𝑛] = 1 + L + · · · + L𝑛
.

Relations among the classes in K0(Var/k) are often detected via homomorphisms of K0(Var/k) into
other rings. We will consider the following diagram of motivic measures

(18)

Z[L] K0(Var/k) K0(HS) Z[𝑥,𝑦] Z[𝑧]

Z K0(Cat/k) Z[𝑡, 𝑡−1] Z,

L↦→1

𝜇
Hdg

𝜇Db

𝜇E

𝜒

𝜇
Hoch

(−)0

where the subdiagram on the full arrows commutes, and the subdiagram on the dashed arrows commutes

on the image of Z[L], see Remark 2.10. We will now recall the constructions of these measures, and

explain how they are related. Whenever Hodge structures are involved, we will tacitly assume that k = C.

Every variety over k is birational, via a resolution of singularities, to a nonsingular, projective variety,

by our choice of k. It follows that the natural map from the free abelian group generated by smooth,

projective varieties over k to K0(Var/k) is surjective. A theorem of Bittner [6, Theorem 3.1] asserts

that the kernel of this map is generated by [∅] = 0, and the relations ( [Bl𝑍 (𝑋 )] − [𝐸]) − ([𝑋 ] − [𝑍 ]),
where 𝐸 is the exceptional divisor of the blowup Bl𝑍 (𝑋 ) → 𝑋 of 𝑋 in 𝑍 , where both 𝑋 and 𝑍 are

smooth and projective.

We apply Bittner’s presentation to construct the first motivic measure that appears in our conjecture.

Example 2.4 (Hodge motivic measure). Consider the category HS of polarizable pure rational Hodge

structures. Using Bittner’s presentation we have a well-defined motivic measure 𝜇Hdg, landing in the

Grothendieck ring K0(HS), by setting

(19) [𝑋 ] ↦→ [H•(𝑋C,Q)] =
2 dim𝑋⊕
𝑖=0

[H𝑖 (𝑋C,Q)]

whenever 𝑋 is a smooth, projective variety.

To complete the top row of (18) we discuss the following motivic measures.

Example 2.5 (E-polynomial). The Hodge motivic measure factors the E-polynomial motivic mea-

sure 𝜇E : K0(Var/k) → Z[𝑥,𝑦] which is defined as

(20) [𝑋 ] ↦→
dim𝑋∑︁
𝑝,𝑞=0

(−1)𝑝+𝑞h𝑝,𝑞 (𝑋 )𝑥𝑝𝑦𝑞
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whenever 𝑋 is a smooth, projective variety. By abuse of notation we will denote by 𝜇E both the motivic

measure just defined, and the morphism K0(HS) → Z[𝑥,𝑦] defined by setting

(21) [𝐻 ] ↦→
∑︁
𝑝,𝑞∈Z

(−1)𝑝+𝑞h𝑝,𝑞 (𝐻 )𝑥𝑝𝑦𝑞

whenever 𝐻 is a pure Hodge structure, through which it factors.

Example 2.6 (Betti numbers and Euler characteristic). By the Hodge decomposition we can consider

the ring morphism

(22) Z[𝑥,𝑦] ↦→ Z[𝑧] : 𝑥,𝑦 ↦→ 𝑧.

The composition with 𝜇E gives the Poincaré–Betti polynomial whenever 𝑋 is a smooth projective

variety. By further setting 𝑧 = 1 we obtain the Euler characteristic of 𝑋 .

On the second row of (18) we consider the Grothendieck ring of categories, as introduced in [8].

Definition 2.7. The Grothendieck ring of categories K0(Cat/k) is the free abelian group generated by

quasi-equivalence classes of smooth and proper pretriangulated dg categories modulo the “cut-and-paste

relation” [A] = [B] + [C], whenever H0(A) = ⟨H0(B),H0(C)⟩ is a semiorthogonal decomposition. The

ring structure on K0(Cat/k) is defined by the tensor product of dg categories.

Example 2.8 (Derived categories). Using Bittner’s presentation, and Orlov’s blowup formula, we have

a well-defined motivic measure 𝜇Db , landing in K0(Cat/k), by setting

(23) [𝑋 ] ↦→ [Db(𝑋 )],

whenever 𝑋 is a smooth, projective variety. The left square in (18) commutes.

Example 2.9 (Hochschild homology polynomial). The motivic measure 𝜇Db factors the motivic mea-

sure 𝜇Hoch : K0(Var/k) → Z[𝑡, 𝑡−1], which is defined as

(24) [𝑋 ] ↦→
dim𝑋∑︁

𝑖=− dim𝑋

dimkHH𝑖 (𝑋 )𝑡𝑖

whenever 𝑋 is a smooth, projective variety.

The Hochschild homology of 𝑋 is defined as HH𝑖 (𝑋 ) := Ext
𝑖
𝑋×𝑋 (Δ∗O𝑋 ,Δ∗𝜔𝑋 [dim𝑋 ]). Hochschild

homology is an additive invariant [22, Theorem 1.5(c)], sending semiorthogonal decompositions to

direct sums, thus explaining why it factors through K0(Cat/k). Again, by abuse of notation we also

denote by 𝜇Hoch the morphism K0(Cat/k) → Z[𝑡, 𝑡−1].

By the Hochschild–Kostant–Rosenberg decomposition, e.g., as in [38], we have

(25) HH𝑖 (𝑋 ) �
⊕
𝑞−𝑝=𝑖

H
𝑝 (𝑋,Ω𝑞

𝑋
),

so the measure 𝜇Hoch (or more precisely, the composition 𝜇Db ◦ 𝜇Hoch) factors through 𝜇Hdg and 𝜇E, i.e.,
the middle square in (18) commutes.

Remark 2.10.We can consider both the Euler characteristic of 𝑋 , and the Euler characteristic of the

Hochschild homology of 𝑋 . By (25), if all Hodge numbers h
𝑝,𝑞 (𝑋 ) where 𝑝 + 𝑞 is odd vanish, then both

Euler characteristics are computed by summing positive integers, and thus they will agree. This is in

particular the case if [𝑋 ] ∈ Z[L].
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Remark 2.11. It is possible to modify (18) and add an analogue of K0(HS) to its bottom row. To do

so, we have to replace K0(Cat/k) by its subring K0(geomCat/k) given by geometric dg categories, i.e.,

those dg categories which arise as admissible subcategories of derived categories of smooth projective

varieties. The question whether every smooth and proper dg category is geometric, and thus whether

the subring is all of K0(Cat/k) is raised in [30] and remains open.

By [31, Proposition 5.4(1)], the topological K-theory of a geometric dg comes equipped with a Hodge

structure, for which

(26) gr
𝑝 (Ktop

𝑖
(A) ⊗ C) � HH𝑖+2𝑝 (A) .

By Bott periodicity, it will suffice for us to consider 𝑖 = 0, 1. This makes it possible to define the ring

morphism

(27) K0(geomCat/k) → K0(Z/2Z-HS) : [A] ↦→ [Ktop

0
(A) ⊕ K

top

1
(A)]

landing in the Grothendieck ring of Z/2Z-graded Hodge structures, and which factors the mor-

phism 𝜇Hoch in the bottom row of (18). We will not use this in what follows.

3 Decomposing Fano schemes in the hyperelliptic case

Let us first recall a precursor to the web of conjectures and results regarding F𝑘 (𝑄1 ∩𝑄2).

By [15, Theorem 1] there is an isomorphism F𝑔−2(𝑄1 ∩𝑄2) � M𝐶 (2,L), where M𝐶 (2,L) is the moduli

space of stable rank-2 bundles with fixed determinant L of odd degree. In [3, Conjecture A], the authors

conjectured and gave evidence for a semiorthogonal decomposition for Db(M𝐶 (2,L)) in terms of 𝐶

and its symmetric powers, similar to Conjecture A. This decomposition has since been established:

• [40, Theorem 1.1] gives the decomposition along with, possibly, a phantom component,

• [39, Theorem 1.1] shows the vanishing of the phantom component.

In fact, the conjecture and its proof work for an arbitrary smooth curve of genus 𝑔, not just hyperelliptic

curves. For 𝑘 ≠ 𝑔 − 2, 𝑔 − 1 the Fano scheme does not have an interpretation which also makes sense for

non-hyperelliptic curves.

Thus, the context for Conjecture A is that it is an interpolation between semiorthogonal decompositions

for 𝑄1 ∩𝑄2 as in (1) for 𝑘 = 0 and M𝐶 (2,L) as in [39, Theorem 1.1] for 𝑘 = 𝑔 − 2.

As evidence for the (no longer conjectural) decomposition of Db(F𝑔−2(𝑄1 ∩ 𝑄2)), it is shown in [3,

Theorem C] that in K0(Var/k) we have the identity

(28) [F𝑔−2(𝑄1 ∩𝑄2)] = L𝑔−1 [Sym𝑔−1𝐶] +
𝑔−2∑︁
𝑖=1

(L𝑖 + L3𝑔−3−2𝑖) [Sym𝑖 𝐶] +𝑇,

for some class 𝑇 such that (1 + L) ·𝑇 = 0, which is conjectured in op. cit. to vanish. Thus, Conjecture B

is the (conjectural) analogue of (28), for different values of 𝑘 .

In this section we will prove that a decomposition result from [13] holds in the more refined setting

involving Hodge structures, and use this as the main evidence for Conjecture B. As explained in

Section 3.3 we obtain evidence for Conjecture A from Conjecture B by setting L = 1.

3.1 Preliminaries on mixed Hodge modules

We recall some basics on mixed Hodge modules which are necessary for the proof of Theorem C. The

reader who is familiar with the theory can skip ahead to Section 3.2.
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Hodge modules Let 𝑋 be a smooth variety over C. We freely use the language of mixed Hodge

modules on 𝑋 due to M. Saito; the basic formal features of the theory are summarized, for instance,

in [35]. Fortunately, we only require a few general properties of the theory, which we now review.

1. There is an abelian category MHM(𝑋 ) of mixed Hodge modules on 𝑋 , whose derived cate-

gory Db(MHM(𝑋 )) enriches the derived category of constructible sheaves Db

c
(𝑋,Q), in the sense

that there is a rationalization functor

(29) rat𝑋 : Db(MHM(𝑋 )) → Db

c
(𝑋,Q).

Given a morphism 𝑓 : 𝑋 → 𝑌 , the familiar operations on derived categories of constructible

sheaves (e.g., 𝑓∗, 𝑓 ∗, 𝑓 !, 𝑓!) lift to Db(MHM(𝑋 )).

2. The abelian category MHM(pt) is equivalent to the category of Q-mixed Hodge structures.

3. Each mixed Hodge module has an underlying D-module. Moreover, there is a forgetful func-

tor from Db(MHM(𝑋 )) to Db

coh
(D𝑋 ), where D𝑋 is the ring of differential operators on 𝑋 . By

convention, we always work with left D-modules.

Example 3.1. Let𝑋 be a smooth variety over C of dimension 𝑑 . We writeQH [𝑑] for the constant Hodge
module, whose underlying perverse sheaf is the shifted constant sheaf Q[𝑑].
Example 3.2 (IC-extensions). Let 𝑋 be a smooth variety over C. Let 𝑍 ⊂ 𝑋 be an integral subvariety

of 𝑋 , and let 𝑈 ⊂ 𝑍 be a nonempty open subvariety. Given a variation of Hodge structure V on 𝑈 , a

fundamental result of Saito [36] says that V extends in a unique and functorial manner to a mixed

(in fact, pure) Hodge module on 𝑋 , written IC(𝑍,V), with support on 𝑍 . As the notation suggests, the

rationalization of the Hodge module IC(𝑍,𝑉 ) is 𝑖∗ 𝑗!∗V, where 𝑖 : 𝑍 → 𝑋 , 𝑗 : 𝑈 → 𝑍 , and 𝑗!∗ is the
intermediate extension.

Example 3.3 (Strict support decomposition). The previous example is universal in the following sense:

Let𝑀 be a pure Hodge module. Then there is a decomposition

(30) 𝑀 �
⊕
𝑖

IC(𝑍𝑖 ,V𝑖),

where {𝑍𝑖} is a finite set of irreducible closed subvarieties of 𝑋 , and V𝑖 is a variation of Hodge structure

on an open subvariety of 𝑍𝑖 . The reader may take this to be the definition of a pure Hodge module,

although we have refrained from discussing weights.

Fourier transforms A sheaf of Q-vector spaces on C𝑛 × 𝑋 is said to be monodromic if its restriction
to each Gm-orbit (for the scaling action of Gm on C𝑛

) is locally constant. An object of Db

c
(C𝑛 × 𝑋,Q) is

monodromic if its cohomology sheaves are monodromic. Finally,𝑀 ∈ Db(MHM(𝑋 )) is monodromic if

its rationalization is monodromic.

Remark 3.4. There is a corresponding notion for a D-module to be monodromic, which means (roughly)

that it admits a generalized eigenspace decomposition with respect to the Euler operator

∑
𝑥𝑖𝜕𝑥𝑖 . If𝑀 is

a regular holonomic D-module, then𝑀 is monodromic (in this sense) if and only if the corresponding

perverse sheaf is monodromic in the sense described above, cf. [9, Proposition 7.12].

The Fourier–Sato transform carries monodromic perverse sheaves on C𝑛 × 𝑋 to monodromic perverse

sheaves on C𝑛,∨ × 𝑋 . For example, in the case 𝑋 = pt, the skyscraper sheaf Q0 supported at 0 ∈ C𝑛
is

carried to the perverse sheaf Q[𝑛]. A comprehensive treatment may be found in [21], but Example 3.5

is sufficient for the time being; a general definition for Hodge modules will be given below.

There is a corresponding operation for D-modules, often called the Fourier–Laplace transform, which

(in rough terms) exchanges the action of the differential operators 𝑥1, . . . , 𝑥𝑛 (resp., 𝜕𝑥1, . . . , 𝜕𝑥𝑛 ) pulled

10



back from C𝑛
with the action of 𝜕𝑦1, . . . , 𝜕𝑦𝑛 (resp., 𝑦1, . . . , 𝑦𝑛) pulled back from C𝑛,∨

. Here, 𝑦1, . . . , 𝑦𝑛 is

the basis dual to 𝑥1, . . . , 𝑥𝑛 .

Example 3.5. Let 𝜄 : 𝑉 ⊂ C𝑛
be a vector subspace of dimension 𝑑 , and let 𝜄⊥ : 𝑉⊥ ⊂ C𝑛,∨

be the

annihilator of 𝑉 , i.e., 𝑉⊥ = {𝑤 | 𝑤 (𝑉 ) = 0}. Then

(31) FS(𝜄∗Q[𝑑]) � 𝜄⊥∗ Q[𝑑⊥],

where 𝑑⊥ = dim𝑉⊥ = 𝑛 − 𝑑 .

To prove this, one may write C𝑛 � 𝑉 ⊕𝑊 for some subspace𝑊 .

There is a natural isomorphism C𝑛,∨ → 𝑉 ∨ ⊕𝑊 ∨
which induces an isomorphism from 𝑉⊥

to𝑊 ∨
. We

write

(32) 𝜄∗Q[𝑑] � Q[𝑑] ⊠ Q0,

where Q0 is the skyscraper sheaf supported at 0 ∈𝑊 .

There is a compatibility between exterior products and the Fourier–Sato transformation [21, Proposi-

tion 3.7.15] (which uses different terminology). In our case, this means that

(33) FS(Q[𝑑] ⊠ Q0) � FS(Q[𝑑]) ⊠ FS(Q0) � Q0 ⊠ Q[dim𝑊 ∨] .

Under the isomorphism between C𝑛,∨
and 𝑉 ∨ ⊕𝑊 ∨

, the rightmost term is identified with 𝜄⊥∗ Q[𝑑⊥].

Monodromic Hodge modules We now describe the Fourier–Laplace transform for monodromic

mixed Hodge modules, first introduced by T. Saito [37]. In fact, there are many possible mixed Hodge

module structures on the Fourier–Laplace transform of the underlying D-module, see [37, Remark 3.24].

We have adopted the “geometric” approach of [11].

Suppose that𝑀 is a mixed Hodge module on C𝑛 × 𝑋 . Consider the diagram

(34)

C𝑛 × C𝑛,∨ × 𝑋 C𝑛 × 𝑋

C𝑛,∨ × 𝑋,

𝑝∨

𝑝

𝜎

where𝜎 is the zero-section, and 𝑝, 𝑝∨ are the projections. Finally, there is a function𝑔 : C𝑛×C𝑛,∨×𝑋 → C,
given by the natural pairing between the fibers of C𝑛

and C𝑛,∨
over 𝑋 . We recall the following definition

from [11].

Definition 3.6. Let𝑀 be a mixed Hodge module on C𝑛 × 𝑋 . Then we define

(35) FL(𝑀) = 𝜎∗𝜙𝑔𝑝 !𝑀,

where 𝜙𝑔 denotes the vanishing cycles functor along 𝑔.

Remark 3.7. When working with mixed Hodge modules, our notational convention is that all functors

(e.g., 𝑓∗, 𝑓 ∗, 𝑓!, 𝑓 !) are derived.

Remark 3.8. In [11], the stated definition isH0𝜎∗𝜙𝑔𝑝 !𝑀 [−𝑛], where cohomology is taken with respect

to the standard t-structure on D-modules, which corresponds to the perverse t-structure on Db

c
(𝑋,Q)

under the Riemann–Hilbert correspondence. (The shift by −𝑛, which we have not followed, is a matter

of convention.) In fact, we claim that the rationalization of 𝜎∗𝜙𝑔𝑝 !𝑀 is concentrated in a perverse single

degree, so the difference between FL(𝑀) and H−𝑛
FL(𝑀) is a formality.
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Indeed, after rationalization and commuting vanishing cycles with proper pushforward (as in the

proof of Lemma 3.9 below), the formula above for FL(𝑀) coincides with formula (10.3.31) of [21] for

the Fourier–Sato transform of the rationalization of𝑀 . Then [21, Proposition 10.3.18] shows that the

Fourier–Sato transform is perverse t-exact.

Lemma 3.9. Let 𝑋 be a smooth, proper variety, and let 𝑀 ∈ Db(MHM(𝑋 )) be monodromic. Suppose
that 𝑓 : 𝑋 → 𝑌 is a proper morphism, and let

(36)

𝜋 = 1 × 𝑓 : C𝑛 × 𝑋 → C𝑛 × 𝑌
𝜋∨ = 1 × 𝑓 : C𝑛,∨ × 𝑋 → C𝑛,∨ × 𝑌

be the corresponding maps. Then 𝜋∗𝑀 is a monodromic mixed Hodge module, and there is an isomorphism
of mixed Hodge modules

(37) FL(𝜋∗𝑀) � 𝜋∨
∗ FL(𝑀) .

Proof. The fact that monodromicity of constructible complexes is preserved by pushforward is given by

[21, Proposition 8.5.7]. We apply this fact to the rationalization of𝑀 .

For the identity, the idea is to commute 𝜋∗ with each of the functors 𝑝 !, 𝜙𝑔, and 𝜎∗ used to define FL(𝑀).
We write

(38)

C𝑛 × C𝑛,∨ × 𝑌 C𝑛 × 𝑌

C𝑛,∨ × 𝑌

𝑞∨

𝑞

𝜏

for the analogue of (34), and let ℎ : C𝑛 × C𝑛,∨ × 𝑌 → C × 𝑌 be the natural pairing.

There is a cartesian square

(39)

C𝑛,∨ × 𝑋 C𝑛 × C𝑛,∨ × 𝑋

C𝑛,∨ × 𝑌 C𝑛 × C𝑛,∨ × 𝑌 .

𝜎

𝜋∨ 𝜋×𝜋∨

𝜏

Since the vertical maps are proper, by proper base change for mixed Hodge modules [36, §4.4.3] there is

an isomorphism of functors

(40) 𝜋∨
∗ ◦ 𝜎∗ � 𝜏∗ ◦ (𝜋 × 𝜋∨)∗.

Next, 𝑔 = ℎ ◦ (𝜋 × 𝜋∨), and according to the compatibility between vanishing cycles and proper

pushforward [36, Theorem 2.14] there is an isomorphism of functors

(41) (𝜋 × 𝜋∨)∗ ◦ 𝜙𝑔 � 𝜙ℎ ◦ (𝜋 × 𝜋∨)∗.

Finally, applying proper base change once more to the the cartesian square

(42)

C𝑛 × C𝑛,∨ × 𝑋 C𝑛 × 𝑋

C𝑛 × C𝑛,∨ × 𝑌 C𝑛 × 𝑌,

𝑝

𝜋×𝜋∨ 𝜋

𝑞

we obtain an isomorphism of functors 𝑞! ◦ 𝜋∗ � (𝜋 × 𝜋∨)∗ ◦ 𝑝 !. The statement follows from putting all

of the identities together. □
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Lemma 3.10. Let 𝑋 be a smooth variety over C. Let 𝜄 : 𝐸 ⊂ C𝑛 × 𝑋 be a vector bundle over 𝑋 , and
let 𝜄⊥ : 𝐸⊥ ⊂ C𝑛,∨ × 𝑋 be the annihilator of 𝐸. We write 𝑑 = dim𝐸, 𝑑⊥ = dim𝐸⊥.

1. The Hodge module 𝜄∗QH [𝑑] is monodromic.

2. There is an isomorphism of Hodge modules

(43) FL(𝜄∗QH [𝑑]) � 𝜄⊥∗ QH [𝑑⊥] (𝑑 − 𝑑⊥) .

3. Let 𝜋 : C𝑛 × 𝑋 → 𝑋 and 𝜋∨
: C𝑛,∨ × 𝑋 → 𝑋 be the projections. Then 𝜋∗𝜄∗QH [𝑑] is monodromic,

and there is an isomorphism of mixed Hodge modules

(44) FL(𝜋∗𝜄∗QH [𝑑]) � 𝜋∨
∗ 𝜄

⊥
∗ Q

H [𝑑⊥] (𝑑 − 𝑑⊥)

Proof. Item 1 is a direct consequence of the definition: the underlying perverse sheaf of 𝜄∗QH [𝑑] is 𝜄∗Q[𝑑],
and the only nonzero cohomology sheaf is constant along each Gm-orbit in C𝑛 × 𝑋 .

For Item 2, we argue indirectly as follows: From Example 3.5, we know that the statement is true for

the underlying perverse sheaves, at least locally over 𝑋 . On the other hand, from the existence of the

strict support decomposition described in Example 3.3, both sides are IC-extensions of variations of

Hodge structures on 𝐸⊥ whose underlying local systems have rank 1 and trivial monodromy (since the

property of having trivial monodromy may be checked on a Zariski-open cover). It follows that the

variations are isomorphic up to a twist.

For Item 3, the fact that the pushforward is monodromic is given in Lemma 3.9, which also furnishes

the identity

(45) FL(𝜋∗𝜄∗QH [𝑑]) � 𝜋∨
∗ FL(𝜄∗QH [𝑑])).

The right-hand side is 𝜋∨
∗ 𝜄

⊥
∗ Q

H [𝑑⊥] (𝑑 − 𝑑⊥), as one may see by pushing forward Item 2. □

3.2 Cohomology of the Fano scheme

The cohomology of F𝑘 (𝑄1 ∩𝑄2) is computed in [12, Theorem 1.1], where an isomorphism of vector

spaces

(46) H
𝑑−𝑖 (F𝑘 (𝑄1 ∩𝑄2),C) �

𝑔⊕
𝑗=𝑑−𝑘−1

(∧𝑔− 𝑗
H
1(𝐶,C)

)⊕𝑁 (𝑔−𝑘,𝑗 ;𝑑−𝑖 )

is given. Here 𝑁 (𝑎, 𝑏; 𝑐) denotes the coefficient of 𝑞𝑐 in

(47) 𝑞−(𝑏−𝑎+1) (2𝑎−1) (1 − 𝑞4𝑏)
∏𝑎+𝑏−2

ℓ=𝑏−𝑎+2(1 − 𝑞2ℓ )∏
2𝑎−2
ℓ=1 (1 − 𝑞2ℓ )

.

This result does not deal with the Hodge structures on both sides of (46). We will upgrade the proof

of [12, Theorem 1.1], and explain the necessary modifications to obtain Theorem C, which upgrades

(46) to an isomorphism of Hodge structures. From now on, until the end of Section 3.2, we will use the

notation of [12].

13



Springer theory Let 𝑉 be a C-vector space of dimension 2𝑛. We write𝐺 = SL(𝑉 ), and 𝐾 = SO(𝑉 ,𝑞),
where 𝑞 is a nondegenerate quadratic form on 𝑉 . We write 𝔤 for the Lie algebra of 𝐺 , and 𝔤1 for the Lie

algebra of 𝐾 , respectively; similarly, we write N and N1 for the nilpotent cones of𝐺 and 𝐾 , respectively.

We write 𝔤reg ss for the regular semisimple elements of 𝔤, and set 𝔤
reg ss

1
:= 𝔤1 ∩ 𝔤reg ss. To each ele-

ment 𝛾 ∈ 𝔤
reg ss

1
, one may associate the nondegenerate quadratic form (𝛾−,−), where (−,−) is the

bilinear form corresponding to 𝑞. Thus to translate back into our notation, one takes 2𝑛 = 2𝑔 + 2, but in

what follows we will use the notation of op. cit., and use affine (instead of projective) dimensions.

The proof of Theorem C proceeds by analyzing the relationship between the following three construc-

tions from [12]:

1. There is a morphism C → 𝔤
reg ss

1
whose fiber over 𝛾 ∈ 𝔤

reg ss

1
is the hyperelliptic curve𝐶𝛾 of genus

𝑔 given by the double cover with equation

(48) 𝑦2 = det(𝑡 · 1 − 𝛾) .

We write 𝑓 : Jac → 𝔤
reg ss

1
for the associated Jacobian fibration.

2. For each 𝑖 = 0, . . . , 𝑔 we consider the family

(49) 𝑣𝑖 : 𝐸𝑖 =
{
(𝛾 ∈ 𝔤1, 0 ⊂ 𝐻𝑖 ⊂ 𝐻⊥

𝑖 ⊂ C2𝑛) | 𝛾 (𝐻⊥) = 0

}
→ 𝔤1

where dim𝐻𝑖 = 𝑖 . This is Reeder’s resolution of the nilpotent orbit O
2
𝑖
1
2𝑛−2𝑖 from [33].

3. For each 𝑖 = 0, . . . , 𝑔 we consider the family

(50) q𝑣𝑖 : q𝐸𝑖 =
{
(q𝛾 ∈ 𝔤1, 0 ⊂ 𝐻𝑖 ⊂ 𝐻⊥

𝑖 ⊂ C2𝑛) | q𝛾 (𝐻𝑖) ⊂ 𝐻⊥
𝑖

}
→ 𝔤1

where dim𝐻𝑖 = 𝑖 . Over a regular semisimple element 𝛾 ′ corresponding to a smooth quadric 𝑄 ′
,

the fiber q𝐸𝑖,𝛾 ′ is the Fano scheme of (affine) 𝑖-planes on the intersection 𝑄 ′ ∩𝑄 , where 𝑄 is the

smooth quadric associated to the fixed quadratic form 𝑞.

We regard 𝐸𝑖 and q𝐸𝑖 as subvarieties of 𝔤1 × 𝐹𝑖 , where 𝐹𝑖 = {0 ⊂ 𝐻𝑖 ⊂ 𝐻⊥
𝑖 ⊂ C2𝑛} is the orthogonal

Grassmannian OGr(𝑖, 𝑞) = OGr(𝑖, 2𝑛).
Lemma 3.11.With the above setup, we have that:

1. 𝐸𝑖 and q𝐸𝑖 are vector bundles on 𝐹𝑖 .

2. With respect to the Killing form on the fibers of 𝔤1 × 𝐹𝑖 → 𝐹𝑖 , one has q𝐸𝑖 = (𝐸𝑖)⊥.

Proof. For Item 1, the fibers of 𝐸𝑖 and q𝐸𝑖 over 𝐹𝑖 are vector subspaces of 𝔤1; to see that the rank is

constant, one considers the action of O(𝑉 ,𝑞) on 𝐹𝑖 , 𝐸𝑖 , and q𝐸𝑖 .

For Item 2, again using the action of O(𝑉 ,𝑞), one may reduce to the case of the fiber over a standard

isotropic subspace. Up to scaling, the Killing form coincides with the trace form𝑀, 𝑁 ↦→ Tr(𝑀𝑁 ), and
the result is a direct calculation. □

Upgrading to mixed Hodge modules The Killing form induces an isomorphism between 𝔤1 and 𝔤
∨
1
,

so we may regard the Fourier–Laplace transform as taking monodromic Hodge modules on 𝔤1 to

monodromic Hodge modules on 𝔤1.

The following duality result is the first step in upgrading the proof of [12, Theorem 1.1].

Proposition 3.12. Let 𝑑𝑖 = dim𝐸𝑖 , q𝑑𝑖 = dim q𝐸𝑖 .

1. The Hodge modules 𝑣𝑖,∗QH [𝑑𝑖] and q𝑣𝑖,∗QH [q𝑑𝑖] are monodromic.
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2. There is an isomorphism

(51) FL(𝑣𝑖,∗QH [𝑑𝑖]) � q𝑣𝑖,∗QH [q𝑑𝑖] (𝑑𝑖 − q𝑑𝑖)

in Db(MHM(𝔤1)).

Proof. Given Lemma 3.11, both parts follow from Lemma 3.10. □

Given Proposition 3.12, the remainder of the proof of Theorem C proceeds as follows.

The dimension and monodromy calculation in [12, Lemma 2.1] shows that 𝑣𝑖 is semismall for each 𝑖

and that the decomposition theorem for 𝑣𝑖 takes the form

(52) 𝑣𝑖,∗QH [𝑑𝑖] �
𝑖⊕
𝑗=0

𝑚𝑖,𝑗⊕
𝑘=0

IC(O
2
𝑗
1
2𝑛−2𝑗 ,QH)⊕𝑠𝑖,𝑗,𝑘 [±𝑘],

in Db(MHM(𝔤1)), where𝑚𝑖, 𝑗 and 𝑠𝑖, 𝑗,𝑘 are certain integers. Therefore, the next goal is to identify the

Fourier–Laplace transform of the IC-sheaves appearing in (52).

Consider the Jacobian fibration 𝑓 : Jac → 𝔤
reg ss

1
, and define the variation of Hodge structure

(53) 𝑊𝑗 := (𝑓∗QH)prim,

where the subscript denotes the primitive part of the variation with respect to the relative theta divisor,

and we emphasize that the pushforward is derived (Remark 3.7).

Lemma 3.13. There is an isomorphism

(54) FL(IC(O
2
𝑗
1
2𝑛−2𝑗 ,QH)) � IC(𝔤1,𝑊𝑗 ),

in Db(MHM(𝔤1)), where we have suppressed Tate twists.

Proof. With Proposition 3.12 in hand, the argument of the proof of [12, Proposition 2.3] works mutatis
mutandis in the category of Hodge modules. □

Proof of Theorem C. Returning to (52) and applying the Fourier–Laplace transform and Lemma 3.13,

we obtain isomorphisms (with twists suppressed)

(55)

q𝑣𝑖,∗QH [q𝑑𝑖] �
𝑖⊕
𝑗=0

𝑚𝑖,𝑗⊕
𝑘=0

FL(IC(O
2
𝑗
1
2𝑛−2𝑗 ,QH))⊕𝑠𝑖,𝑗,𝑘 [±𝑘]

�
𝑖⊕
𝑗=0

𝑚𝑖,𝑗⊕
𝑘=0

IC(𝔤1,𝑊𝑗 )𝑠𝑖,𝑗,𝑘 [±𝑘] .

in Db(MHM(𝔤1)). From here, the conclusion of the proof proceeds exactly as in the proof of [12,

Theorem 1.1], by passing to cohomology and the fiber at an element of 𝔤
reg ss

1
. □
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3.3 Evidence for Conjectures A and B

As evidenced by (28), the conjectural identity (5) for𝑘 = 𝑔−2 is known to hold up to a class𝑇 ∈ K0(Var/k)
for which (1 + L) ·𝑇 = 0. Extending this type of identity from 𝑔 − 2 to all 𝑘 = 0, . . . , 𝑔 − 2 is the topic of

Conjecture B.

The following lemma explains how it holds for 𝑘 = 0 up to multiplication with L.

Lemma 3.14. Let 𝑄1 ∩ 𝑄2 ⊂ P2𝑔+1 be a smooth intersection of quadrics, and let 𝐶 be the associated
hyperelliptic curve. We have that

(56) L[𝑄1 ∩𝑄2] = L
(
[P2𝑔−1] − L𝑔−1 [P1] + L𝑔−1 [𝐶]

)
in K0(Var/k).

Proof. Consider the total space 𝑝 : Q → P1 of the pencil spanned by𝑄1 and𝑄2. Because we are working

over an algebraically closed field, [25, Corollary 2.7] gives us that

(57) [Q] = [P1] [P𝑔−1] (1 + L𝑔+1) + [𝐶]L𝑔,

as the hyperelliptic curve 𝐶 also arises as the hyperbolic reduction. On the other hand we have

that Q � Bl𝑄1∩𝑄2
P2𝑔+1, thus

(58) [Q] = [P2𝑔+1] + L[𝑄1 ∩𝑄2] .

An elementary calculation shows that

(59) [P1] [P𝑔−1] (1 + L𝑔+1) = [P2𝑔+1] + L[P2𝑔−1] − L𝑔 [P1],

which finishes the proof. □

Remark 3.15. Conjecture B is also known to hold in the case of𝑔 = 2 for classical reasons: the projection

from a line 𝐿 on 𝑄1 ∩ 𝑄2 ⊂ P5 can be resolved by blowing up, which exhibits Bl𝐿𝑄1 ∩ 𝑄2 as Bl𝐶 P3,
giving the identity (5) for 𝑔 = 2 and 𝑘 = 0 without the factor present in Lemma 3.14.

The cases 𝑘 = 0, 𝑔 − 2 of Conjecture A are known to hold by the work of Bondal–Orlov, Kuznetsov and

Tevelev–Torres, as explained in the introduction.

Verifying decompositions after applying the E-polynomial motivic measure For fixed 𝑔 ≥ 2

and 𝑘 = 0, . . . , 𝑔 − 2 one can use Theorem C to explicitly compute the Hodge numbers of F𝑘 (𝑄1 ∩𝑄2).
The Hodge numbers of 𝐶 are immediate, and those of Sym

𝑖 𝐶 follow from, e.g., [29, Theorem 1.1]. The

use of these building blocks in Conjecture B is motivated by interpolating between (1) and the BGMN

conjecture [3].

In [2] the Hodge numbers of F𝑘 (𝑄1∩𝑄2) are implemented, following TheoremC. The code in Appendix A

thus verifies Conjecture B for a given 𝑔 and 𝑘 after applying the motivic measure 𝜇E from Example 2.5.

Let us illustrate one example.

Example 3.16. Let 𝑔 = 4 and 𝑘 = 1. The identity in (5) reads

(60) [F1(𝑄1 ∩𝑄2)] = ( [pt] +L+L2 +L4 +L5 +L6 +L8 +L9 +L10) + (L2 +L3 +L6 +L7) [𝐶] +L4 [Sym2] .

By taking the E-polynomial motivic measure, we can check the identity on the level of Hodge diamonds

as in Figure 1.
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(61)

1 1

1 1

2 1 1

4 4 4 4

2 2

4 4 4 4

3 1 1 1

4 4 4 4

6 18 6 = 1 + + 6 17 6

4 4 4 4

3 1 1 1

4 4 4 4

2 2

4 4 4 4

2 1 1

1 1

1 1

F1(𝑄1 ∩𝑄2) = 𝑀4,1,0 + 𝑀4,1,1 [𝐶] + 𝑀4,1,2 [Sym2𝐶]

Figure 1: Decomposition of the Hodge diamond of F1(𝑄1 ∩𝑄2) for 𝑔 = 4

Finally, we can explain how Theorem C can be used to give evidence for the effectivity aspect of Conjec-

ture A, by using 𝜇Db , for which 𝜇Db (L) = 1. Applying Pascal’s identity repeatedly to the term

(
2𝑔−𝑘−𝑖
𝑘+1−𝑖

)
of (4) after setting L = 1 gives the following easy lemma.

Lemma 3.17. Setting L = 1 in (4) gives

(62) 𝑀𝑔,𝑘,𝑖 |L=1 =
(
2𝑔 − 4 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
+ 2

(
2𝑔 − 4 − 𝑘 − 𝑖

𝑘 − 𝑖

)
.

Thus after setting L = 1 one gets a positive integer, but we have not managed to prove rigorously

that the expression 𝑀𝑔,𝑘,𝑖 from (4) is effective already in Z[L]. It is a by-product of the experimental

verification of Conjecture B in Appendix A for many 𝑔 and 𝑘 that (4) is indeed also effective in all the

cases the conjecture has been numerically verified.

4 Decomposing Fano schemes in the stacky case

To give evidence for Conjecture D we will use the same method as in [16, §3], comparing the number of

exceptional objects on the right-hand side of (9) to the Euler characteristic of F𝑘 (𝑄1∩𝑄2). In Sections 4.1

and 4.2 we will prove Proposition E and Proposition 4.2 which concerns the left-hand side in (9). In

Section 4.3 we will recall the definition and properties of “stacky symmetric powers”, allowing us to

compute the number of exceptional objects on the right-hand side of (9) in Section 4.4.
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4.1 Cohomology of the Fano scheme

As in the proof of Theorem C, we will determine the Hodge structure on the cohomology of F𝑘 (𝑄1∩𝑄2),
and thus prove Proposition E, by tracking through the arguments in [13] and ensuring that they lift to

the category of mixed Hodge modules. As in op. cit. we will use 𝑛 instead of 𝑔.

Springer theory Let𝑉 be aC-vector space of dimension 2𝑛+1.Wewrite𝐺 = SL(𝑉 ), and𝐾 = SO(𝑉 ,𝑞),
where 𝑞 is a nondegenerate quadratic form on 𝑉 . We write 𝔤 for the Lie algebra of 𝐺 , and 𝔤1 for the Lie

algebra of 𝐾 , respectively; similarly, we write N and N1 for the nilpotent cones of𝐺 and 𝐾 , respectively.

We write 𝔤reg ss for the regular semisimple elements of 𝔤, and set 𝔤
reg ss

1
= 𝔤1 ∩ 𝔤reg ss. To each ele-

ment 𝛾 ∈ 𝔤
reg ss

1
, one may associate the nondegenerate quadratic from (𝛾−,−), where (−,−) is the

bilinear form corresponding to 𝑞.

Upgrading tomixedHodgemodules Wenow describe a local systemL on 𝔤
reg ss

1
. For each𝛾 ∈ 𝔤

reg ss

1
,

let 𝑆𝛾 = {𝑎0, . . . , 𝑎2𝑛} be the branch points of the associated stacky curve. We set L𝛾 to be the free Z-
module on the set {±𝑎0, · · · ,±𝑎2𝑔}/±1 of assignments 𝑎𝑖 → ±, modulo a global sign.

As 𝛾 varies one obtains a local system L on 𝔤
reg ss

1
of rank 2

2𝑛
. There exists a decomposition of local

systems

(63) L �

𝑔⊕
𝑖=0

L𝑖 ,

where L𝑖 is spanned by the elements {±𝑎𝑖} with 𝑖 plus signs if 𝑖 is even, and 2𝑛 + 1 − 𝑖 plus signs if 𝑖 is
odd (up to the global sign). Each L𝑖 is a finite local system of rank

(
2𝑛+1
𝑖

)
. We regard L (and each L𝑖 ) as

a variation of Hodge structure by declaring the stalks to be of Tate type and of weight 0.

Proposition 4.1. There is an isomorphism of Hodge modules

(64) FL(IC(O
2
𝑖
1
2𝑛−2𝑖+1),QH) � IC(𝔤1,L𝑖) .

Proof. We explain how to lift the proof of [13, Proposition 3.1] to Hodge modules. First, one considers

families 𝑣𝑛,q𝑣𝑛 , which are analogous to the families in the hyperelliptic case considered previously.

Arguing exactly as in the hyperelliptic case, one sees that there is an isomorphism of monodromic

Hodge modules

(65) FL(𝑣𝑛,∗QH [𝑑𝑛]) � q𝑣𝑛,∗QH [q𝑑𝑛] (𝑑𝑛 − q𝑑𝑛) .

Over the regular semisimple locus 𝔤
reg ss

1
, the family q𝑣𝑛 is the relative Fano scheme of maximal linear

subspaces in the intersection of two quadrics, as one of the quadrics varies over 𝔤
reg ss

1
. This is a finite

covering space of degree 2
2𝑛
, and the generic part of the right-hand side is the local system L (up to

shifts and twists).

From the decomposition theorem, one sees that there is a decomposition of Hodge modules

(66) q𝑣𝑛,∗QH [q𝑑𝑛] � IC(𝔤1,L) �
𝑛⊕
𝑖=0

IC(𝔤1,L𝑖),

where the terms on the right are simple Hodge modules, and we have suppressed twists.

On the other hand, the decomposition theorem for 𝑣𝑛 gives

(67) 𝑣𝑛,∗QH [𝑑𝑖] �
𝑛⊕

𝑘=0

IC(O
2
𝑘
1
2𝑛−2𝑘+1,QH),
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and the terms on the right are simple.

Therefore, there is an isomorphism of Hodge modules (with twists suppressed)

(68)

𝑛⊕
𝑘=0

FL(IC(O
2
𝑘
1
2𝑛−2𝑘+1,QH)) �

𝑛⊕
𝑖=0

IC(𝔤1,L𝑖),

and we need to show that the 𝑘th term on the left matches with the 𝑖th term on the right. Each local

system L𝑖 is distinguished by its rank, so it suffices to match terms on the level of perverse sheaves,

which is done in [13, §4]. □

Proof of Proposition E. With Proposition 4.1 in hand, one gets Proposition E by arguing exactly as in

[13, §6.1], and noting that the stalks of IC(𝔤1,L𝑖) at elements of 𝔤
reg ss

1
are of Tate type. □

4.2 Euler characteristic of the Fano scheme

The goal of this subsection is to prove the following.

Proposition 4.2. Let 𝑄1 ∩ 𝑄2 ⊂ P2𝑔 be a smooth intersection of smooth quadrics, where 𝑔 ≥ 2.
For 𝑘 = 0, . . . , 𝑔 − 2 we have

(69) 𝜒 (F𝑘 (𝑄1 ∩𝑄2)) =
(
𝑔

𝑘 + 1

)
4
𝑘+1,

and HH𝑖 (F𝑘 (𝑄1 ∩𝑄2)) = 0 for 𝑖 ≠ 0, thus

(70) dimHH0(F𝑘 (𝑄1 ∩𝑄2)) =
(
𝑔

𝑘 + 1

)
4
𝑘+1.

In [16, §3] this is proven for 𝑘 = 𝑔 − 2 using a sequence of anti-flips obtained by wall-crossing

for the moduli space of quasiparabolic bundles. We are not aware of a similar wall-crossing picture

for F𝑘 (𝑄1 ∩𝑄2) when 𝑘 ≠ 𝑔 − 2, so we will rather build and expand upon the main result of [13], which

leads to Proposition E.

A combinatorial identity We will use the following combinatorial lemma, whose statement was

suggested in [18].

Lemma 4.3. For all integers𝑚 ≥ 0 and 𝑎 ≥ 0 even we have that

(71) 4
𝑚

(
𝑚 + 𝑎/2
𝑚

)
=

𝑚∑︁
𝑖=0

(
𝑚 + 𝑎 − 𝑖

𝑎

) (
2𝑚 + 𝑎 + 1

𝑖

)
.

For completeness’ sake we provide a proof of this statement, using the method to prove a similar

statement from [19].

Proof. The proof strategy is via an application of formal power series. We apply the following identities

of formal power series, the first of which is standard, and the second of which can be found in [41,

page 54]:

1

(1 − 𝑥)𝑛+1 =

∞∑︁
𝑖=0

(
𝑛 + 𝑖
𝑖

)
𝑥𝑖(72)

1

√
1 − 4𝑥

(
1 −

√
1 − 4𝑥

2𝑥

) 𝑗
=

∞∑︁
𝑖=0

(
2𝑖 + 𝑗
𝑖

)
𝑥𝑖 .(73)
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Note first that by switching the order of summation, the right side of (71) may be written as

(74)

𝑚∑︁
𝑖=0

(
𝑎 + 𝑖
𝑎

) (
2𝑚 + 𝑎 + 1

𝑚 − 𝑖

)
.

Now, to show the identity, it suffices to show the equality of the formal power series

(75) 𝐹 (𝑥) =
∞∑︁

𝑚=0

4
𝑚

(
𝑚 + 𝑎/2
𝑚

)
𝑥𝑚, and 𝐺 (𝑥) =

∞∑︁
𝑚=0

𝑚∑︁
𝑖=0

(
𝑎 + 𝑖
𝑎

) (
2𝑚 + 𝑎 + 1

𝑚 − 𝑖

)
𝑥𝑚,

since this implies that all of their coefficients must agree. Equation (72) immediately implies that

(76) 𝐹 (𝑥) = 1

(1 − 4𝑥)𝑎/2+1
.

For the second power series, we switch the order of summation and reindex the sum by 𝑗 =𝑚 − 𝑖:

𝐺 (𝑥) =
∞∑︁
𝑖=0

∞∑︁
𝑚=𝑖

(
𝑎 + 𝑖
𝑎

) (
2𝑚 + 𝑎 + 1

𝑚 − 𝑖

)
𝑥𝑚(77)

=

∞∑︁
𝑖=0

(
𝑎 + 𝑖
𝑎

)
𝑥𝑖

∞∑︁
𝑗=0

(
2 𝑗 + 2𝑖 + 𝑎 + 1

𝑗

)
𝑥 𝑗 .(78)

Then an application of (73), followed by an application of (72) gives

𝐺 (𝑥) =
∞∑︁
𝑖=0

(
𝑎 + 𝑖
𝑎

)
𝑥𝑖 · 1

√
1 − 4𝑥

(
1 −

√
1 − 4𝑥

2𝑥

)2𝑖+𝑎+1
(79)

=
1

√
1 − 4𝑥

(
1 −

√
1 − 4𝑥

2𝑥

)𝑎+1
·

∞∑︁
𝑖=0

(
𝑎 + 𝑖
𝑎

)
𝑥𝑖 ·

(
1 −

√
1 − 4𝑥

2𝑥

)2𝑖
(80)

=
1

√
1 − 4𝑥

·
(
1 −

√
1 − 4𝑥

2𝑥

)𝑎+1
· 1(

1 −
(
1−

√
1−4𝑥
2𝑥

)
2

𝑥

)𝑎+1 .(81)

It is then a straightforward exercise in algebra to verify that

(82) 𝐺 (𝑥) = 1

(1 − 4𝑥)𝑎/2+1
= 𝐹 (𝑥) .

□

Euler characteristic calculation For the proof of Proposition 4.2 we need to recall some facts about

Gaussian binomial coefficients. We write

(83)

(
𝑚

𝑛

)
𝑞

=

∏𝑚
𝑙=𝑚−𝑛+1(1 − 𝑞𝑙 )∏𝑛

𝑙=1
(1 − 𝑞𝑙 )

∈ Z[𝑞]

for the Gaussian binomial coefficient in the variable 𝑞. We will write [𝑞𝑟 ]
(
𝑚
𝑛

)
𝑞
for the coefficient of 𝑞𝑟

in

(
𝑚
𝑛

)
𝑞
. The key facts we need are that

(84)

(
𝑚

𝑛

)
𝑞

=

(
𝑚

𝑚 − 𝑛

)
𝑞
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and

(85) lim

𝑞→1

(
𝑚

𝑛

)
𝑞

=

(
𝑚

𝑛

)
.

We are now ready to prove the identity of Euler characteristics claimed above.

Proof of Proposition 4.2. By Proposition E, and reinterpreting the multiplicities in that statement using

Gaussian binomial coefficients, we have that

(86) b2𝑝 (F𝑘 (𝑄1 ∩𝑄2)) =
𝑘+1∑︁
𝑗=0

(
2𝑔 + 1

𝑗

)
· [𝑞𝑝− 𝑗 (𝑔−𝑘−1) ]

(
2𝑔 − 𝑘 − 𝑗 − 1

𝑘 + 1 − 𝑗

)
𝑞

.

Thus we have that

(87)

𝜒 (F𝑘 (𝑄1 ∩𝑄2)) =
dim F𝑘 (𝑄1∩𝑄2 )∑︁

𝑝=0

b2𝑝 (F𝑘 (𝑄1 ∩𝑄2))

=

dim F𝑘 (𝑄1∩𝑄2 )∑︁
𝑝=0

𝑘+1∑︁
𝑗=0

(
2𝑔 + 1

𝑗

)
· [𝑞𝑝− 𝑗 (𝑛−𝑘−1) ]

(
2𝑔 − 𝑘 − 𝑗 − 1

𝑘 + 1 − 𝑗

)
𝑞

=

𝑘+1∑︁
𝑗=0

(
2𝑔 + 1

𝑗

) dim F𝑘 (𝑄1∩𝑄2 )∑︁
𝑝=0

[𝑞𝑝− 𝑗 (𝑛−𝑘−1) ]
(
2𝑔 − 𝑘 − 𝑗 − 1

2(𝑔 − 𝑘 − 1)

)
𝑞

.

By Proposition 2.1 we have dim F𝑘 (𝑄1 ∩𝑄2) = 2(𝑘 + 1) (𝑔 − 𝑘 − 1). We also have

(88) deg𝑞

(
2𝑔 − 𝑘 − 𝑗 − 1

2(𝑔 − 𝑘 − 1)

)
𝑞

= 2(𝑘 + 1 − 𝑗) (𝑔 − 𝑘 − 1).

Thus, the inner sum runs through all the non-zero coefficients of

(
2𝑔−𝑘− 𝑗−1
2(𝑔−𝑘−1)

)
𝑞
. Now, using (84), (85)

and Lemma 4.3 with𝑚 = 𝑘 + 1 and 𝑎 = 2(𝑔 − 𝑘 − 1) we obtain that

(89) 𝜒 (F𝑘 (𝑄1 ∩𝑄2)) =
𝑘+1∑︁
𝑗=0

(
2𝑔 + 1

𝑗

) (
2𝑔 − 𝑘 − 𝑗 − 1

2(𝑔 − 𝑘 − 1)

)
= 4

𝑘+1
(
𝑔

𝑘 + 1

)
.

Because the Hodge diamond of F𝑘 (𝑄1∩𝑄2) is concentrated on the vertical axis, we have as in Remark 2.10

that

(90) 𝜒 (F𝑘 (𝑄1 ∩𝑄2)) = dimHH•(F𝑘 (𝑄1 ∩𝑄2)) = dimHH0(F𝑘 (𝑄1 ∩𝑄2)) .

□

Remark 4.4. For 𝑘 = 𝑔 − 1 we have that F𝑔−1(𝑄1 ∩𝑄2) is a reduced and finite scheme of cardinality 2
2𝑔

[34, Theorem 3.8], thus the formula (69) still holds in this degenerate case.

4.3 The “stacky symmetric power”

We introduce the following notation. Associated to 𝑝 ∈ P1 we have by projective duality an associ-

ated 𝑝∨ ∈ P1,∨ � P1. The 𝑘th Veronese embedding for P1,∨ gives a closed immersion P1,∨ ↩→ P𝑘,∨. The
image of 𝑝∨ gives a point ℎ∨(𝑝) ∈ P𝑘,∨ which corresponds to a hyperplane 𝐻 (𝑝) ⊂ P𝑘 .
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The image of the Veronese embedding is the rational normal curve, hence the points 𝑝∨𝑖 are in general

position, meaning that the hyperplanes 𝐻 (𝑝𝑖) form a generalized snc divisor: for all 𝐼 ⊂ {1, . . . , 2𝑔 + 1}
and 𝑗 ∈ 𝐼 the inclusion

(91)

⋂
𝑖∈𝐼

𝐻 (𝑝𝑖) ↩→
⋂

𝑖∈𝐼\{ 𝑗 }
𝐻 (𝑝𝑖)

is an effective Cartier divisor.

With this notation, Fonarev gives the following ad hoc definition of a stacky symmetric power [16, §2].

Construction 4.5. Let C be the stacky curve
2

√︁
P1, 𝑝1 + · · · + 𝑝2𝑔+1 attached to 𝑄1 ∩𝑄2 ⊂ P2𝑔. We define

its “stacky symmetric power” as the iterated root stack

(92) S̃ym
𝑘C :=

2

√︃
P𝑘 , 𝐻 (𝑝1) + · · · + 𝐻 (𝑝2𝑔+1),

i.e., the iterated fiber product of the root stacks
2

√︁
P𝑘 , 𝐻 (𝑝𝑖) over P𝑘 .

Remark 4.6. It would be interesting to find a general moduli-theoretic interpretation of S̃ym
𝑘C, which

reduces to the symmetric power of a curve if there were no stacky points, and which works for an

arbitrary stacky curve. We are not aware of such an interpretation.

Let us recall the following lemma, which is proven in [16, §3] using the semiorthogonal decomposition

of a root stack obtained in [20, Theorem 1.6] and [5, Theorem 4.7].

Lemma 4.7. Let𝑄1 ∩𝑄2 ⊂ P2𝑔 be a smooth intersection of smooth quadrics. Let C be the associated stacky
curve. Then Db(S̃ym𝑘C) admits a full exceptional collection of length

(93) rk K0(Db(S̃ym𝑘C)) =
𝑘∑︁
𝑡=0

(𝑘 + 1 − 𝑡)
(
2𝑔 + 1

𝑡

)
,

where S̃ym𝑘C is as in Construction 4.5.

4.4 Evidence for Conjecture D

To give evidence for Conjecture D we will compute the number of exceptional objects in the right-

hand side of (9), and compare it to the zeroth Hochschild homology of F𝑘 (𝑄1 ∩ 𝑄2) as computed in

Proposition 4.2. The following generalises [16, §3] from 𝑘 = 𝑔 − 2 to all 𝑘 = 0, . . . , 𝑔 − 2.

Proposition 4.8. The right-hand side of (9) in Conjecture D admits a full exceptional collection of
length

( 𝑔

𝑘+1
)
4
𝑘+1.

Proof of Proposition 4.8. By Lemma 4.7 the right-hand side of (9) is a semiorthogonal decomposition

where each component has a full exceptional collection, thus it admits itself a full exceptional collection.

It remains to show that for all 𝑔 ≥ 2 and 𝑘 ≤ 𝑔 − 2 its total length is

(94)

(
𝑔

𝑘 + 1

)
4
𝑘+1 =

𝑘+1∑︁
𝑖=0

𝑖∑︁
𝑡=0

(
2𝑔 − 3 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
(𝑖 + 1 − 𝑡)

(
2𝑔 + 1

𝑡

)
.

Taking𝑚 = 𝑘 + 1 and 𝑎 = 2𝑔 − 2𝑘 − 2 in Lemma 4.3 we obtain

(95) 4
𝑘+1

(
𝑔

𝑘 + 1

)
=

𝑘+1∑︁
𝑡=0

(
2𝑔 − 𝑘 − 1 − 𝑡
2𝑔 − 2𝑘 − 2

) (
2𝑔 + 1

𝑡

)
.
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Using the variant of the Chu–Vandermonde identity which reads

(96)

𝑛∑︁
𝑚=0

(
𝑚

𝑗

) (
𝑛 −𝑚
𝑘 − 𝑗

)
=

(
𝑛 + 1

𝑘 + 1

)
for 0 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 we can write

(97)

(
2𝑔 − 𝑘 − 1 − 𝑡
2𝑔 − 2𝑘 − 2

)
=

2𝑔−𝑘−𝑡∑︁
𝛼=0

(
𝛼

1

) (
2𝑔 − 𝑘 − 2 − 𝑡 − 𝛼

2𝑔 − 2𝑘 − 4

)
.

The term

(
𝛼
1

)
vanishes for 𝛼 = 0, so we may index the sum starting from 𝛼 = 1. Now if we reindex the

summation by taking 𝑖 = 𝛼 + 𝑡 − 1, we find

(98)

(
2𝑔 − 𝑘 − 1 − 𝑡
2𝑔 − 2𝑘 − 2

)
=

2𝑔−𝑘−1∑︁
𝑖=𝑡

(
𝑖 + 1 − 𝑡

1

) (
2𝑔 − 3 − 𝑘 − 𝑖
2𝑔 − 2𝑘 − 4

)
=

2𝑔−𝑘−1∑︁
𝑖=𝑡

(
𝑖 + 1 − 𝑡

1

) (
2𝑔 − 3 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
=

𝑘+1∑︁
𝑖=𝑡

(
𝑖 + 1 − 𝑡

1

) (
2𝑔 − 3 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
where the last equality follows since the second term in the product vanishes for 𝑖 > 𝑘 + 1. We therefore

have the equality

(99)

(
𝑔

𝑘 + 1

)
4
𝑘+1 =

𝑘+1∑︁
𝑡=0

𝑘+1∑︁
𝑖=𝑡

(
2𝑔 − 3 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
(𝑖 + 1 − 𝑡)

=

𝑘+1∑︁
𝑖=0

𝑖∑︁
𝑡=0

(
2𝑔 − 3 − 𝑘 − 𝑖
𝑘 + 1 − 𝑖

)
(𝑖 + 1 − 𝑡),

as in (94). □

It thus agrees with Proposition 4.2.

A Code to verify Conjecture B after applying the E-polynomial mo-
tivic measure

The following SageMath code uses [2], commit 1950acc, and is tested with SageMath 10.2. It is available

at https://github.com/pbelmans/decomposing-fano-schemes, which also gives a GitHub Action

that automatically runs the code.

import diamond

BOUND = 15

# coefficient of [Sym^i C] in the identity
def coefficient(k, g, i):

L = diamond.lefschetz()
shift = L**(i * (g-k-1))
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# the coefficient is 1 in this case
if k == g-2 and i == g-1: return shift

C = gaussian_binomial(2*g-k-i, k + 1-i)(L) \
- (L^(g-k-1) + L^(g+2*k-3*i)) * gaussian_binomial(2*g-k-i-4, k-i)(L) \
- (L^(g-k) + L^(g-i) + L^(g+k-2*i) + L^(3*g-3*k-4) + L^(3*g-2*k-4-i) \

+ L^(3*g-k-2*i-4)) * gaussian_binomial(2*g-k-i-4, k-i-1)(L) \
- (L^(3 * (g-k-1)) + L^(3*(g-k-1) + 1) + L^(3*g-2*k-i-3) \

+ L^(3*g-2*k-i-2)) * gaussian_binomial(2*g-k-i-4, k-i-2)(L) \
- L^(4*(g-k)-2) * gaussian_binomial(2*g-k-i-4, k-i-3)(L)

# we check the expression is effective, despite the minus signs
assert all(c >= 0 for c in C.polynomial.coefficients())

return C * shift

# testing identity in K_0(Var/k) as equality of Hodge polynomials
for g in range(2, BOUND):

for k in range(g-1):
X = diamond.fano_variety_intersection_quadrics_odd(g, k)

Y = sum(coefficient(k, g, i) * diamond.symmetric_power(i, g) \
for i in range(k+2))

print("Testing identity in K_0(Var/k) for g = {}, k = {}".format(g, k))
assert X == Y
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